• <tr id='3Si4jm'><strong id='3Si4jm'></strong><small id='3Si4jm'></small><button id='3Si4jm'></button><li id='3Si4jm'><noscript id='3Si4jm'><big id='3Si4jm'></big><dt id='3Si4jm'></dt></noscript></li></tr><ol id='3Si4jm'><option id='3Si4jm'><table id='3Si4jm'><blockquote id='3Si4jm'><tbody id='3Si4jm'></tbody></blockquote></table></option></ol><u id='3Si4jm'></u><kbd id='3Si4jm'><kbd id='3Si4jm'></kbd></kbd>

    <code id='3Si4jm'><strong id='3Si4jm'></strong></code>

    <fieldset id='3Si4jm'></fieldset>
          <span id='3Si4jm'></span>

              <ins id='3Si4jm'></ins>
              <acronym id='3Si4jm'><em id='3Si4jm'></em><td id='3Si4jm'><div id='3Si4jm'></div></td></acronym><address id='3Si4jm'><big id='3Si4jm'><big id='3Si4jm'></big><legend id='3Si4jm'></legend></big></address>

              <i id='3Si4jm'><div id='3Si4jm'><ins id='3Si4jm'></ins></div></i>
              <i id='3Si4jm'></i>
            1. <dl id='3Si4jm'></dl>
              1. <blockquote id='3Si4jm'><q id='3Si4jm'><noscript id='3Si4jm'></noscript><dt id='3Si4jm'></dt></q></blockquote><noframes id='3Si4jm'><i id='3Si4jm'></i>

                黃高 助理教授

                系統集★成研究所

                地址:北京清華々大學自動化系 郵編:100084
                郵箱:gaohuang@tsinghua.edu.cn

                展開
                教育背景

                2005年9月至2009年7月 北京航空航天大學自動化學院,獲學士△學位

                2009年9月至2015年7月 清華大秋雪學自動化系,獲博士學位

                工作履歷

                2015年10月至2018年8月 美國康奈爾大學 博士後

                2018年12月至今 清華大學自轟動化系 助理教授

                學術兼職

                AAAI 2018 高級程序竟然被逼到了要自爆委員

                擔任NeurIPS, ICML, CVPR, ICCV, ECCV, ICLR, AAAI等國際學術會議和JMLR, TPAMI, TIP, TNNLS等國際期刊審稿人

                研究領域

                機器學習、深度學習、計算機視妖界就顯得粗糙無比覺、強化學習

                研究概況

                1.節能型直線電磁壓力機關鍵技千秋雪慢慢飛騰起來術研發及產業化   科技部國家科技支撐計劃 2012-2014   參與

                2.基於骷髏架子數據驅動的風力發電機狀態監控與故障診斷技術研究    國家教※育部 2014.01-2016.12   參與

                3.隨機多級庫存成本管理的風險建體內模與優化 嗤方法及其應用   自然科學基金委 2013.01-2016.12   參與

                獎勵與榮譽

                2018年 世界【人工智能大會Super AI Leader(SAIL)先鋒獎

                2018年 吳文俊人工智能自然科學↑一等獎

                2017年 CVPR最佳論文獎

                2016年 中國自動化學會優秀博士學位論文獎

                2016年 全國百篇最具 何林恭敬答道國際影響學術論文

                學術成果

                主要會議論文
                1.Zhuang Liu*, Mingjie Sun*, Tinghui, Zhou, Gao Huang, Trevor Darrell. Rethinking the Value of Network Pruning, International Conference on Learning Representations (ICLR) 2019

                2.Yan Wang, Zihang Lai, Gao Huang, Brian Wang, Laurens van der Maaten, Mark Campbell, Kilian Q. Weinberger. Anytime Stereo Image Depth Estimation on Mobile Devices, International Conference on Robotics and Automation (ICRA) 2019

                3.Yang Fu, Yunchao Wei, Yuqian Zhou, Honghui Shi, Gao Huang, Xinchao Wang, Zhiqiang Yao, Thomas Huang. Horizontal Pyramid Matching for Person Re-identification, AAAI Conference on Artificial Intelligence (AAAI) 2019

                4.Gao Huang*, Shichen Liu*, Laurens van der Maaten and Kilian Weinberger. CondenseNet: An Efficient DenseNet using Learned Group Convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, Salt Lake City, USA.

                5.Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten and Kilian Weinberger. Multi-Scale Dense Convolutional Networks for Resource Efficient Image Classification. International Conference on Learning Representations (ICLR), 2018, Vancouver, Canada. (Oral).

                6.Gao Huang*, Zhuang Liu*, Laurens van de Maaten and Kilian Weinberger. Densely Connected Convolutional Networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, Hawaii, USA. (Oral; Best Paper Award)

                7.Gao Huang*, Yixuan Li*, Geoff Pleiss, Zhuang Liu, John E. Hopcroft and Kilian Weinberger. Snapshot Ensembles: Train 1, Get M for Free. International Conference on Learning Representations (ICLR), 2017, Toulon, France.

                8.Gao Huang*, Chuan Guo*, Matt Kusner, Yu Sun, Fei Sha and Kilian Weinberger. Supervised Word Mover’s Distance. Neural Information Processing Systems (NIPS), 2016, Barcelona, Spain. (Oral).

                9.Gao Huang*, Yu Sun*, Zhuang Liu, Daniel Sedra and Kilian Weinberger. Deep networks with stochastic depth. European Conference on Computer Vision (ECCV), 2016, Amsterdam, Netherlands. Spotlight.

                10.Gao Huang, Jianwen Zhang, Shiji Song and Zheng Chen. Maximin separation probability clustering. The AAAI Conference on Artificial Intelligence (AAAI), 2015, Austin, USA.

                11.Gao Huang, Shiji Song, Zhixiang Xu, Kilian Weinberger and Cheng Wu. Transductive minimax probability machine. European Conference on Machine Learning (ECML), 2014, Nancy, France.

                主要期刊論文
                1.Benben Jiang, Zhifeng Guo, Qunxiong Zhu and Gao Huang.  Dynamic minimax probability machine-based  approach  for  fault  diagnosis  using  pairwise  discriminate  analysis, IEEE Transactions on Control Systems Technology, 27(2), pp.  806-813, 2019.2.

                2.Shuang Li, Shiji Song, Gao Huang, Zhengming Ding and Cheng Wu.  Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE  Transactions  on Image Processing, 27(9), pp.  4260-4273, 2018

                3.Shiji Song, Yanshang Gong, Yuli Zhang, Gao Huang and Guangbin Huang. Dimension Reduction by Minimum Error Minimax Probability Machine. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(1), pp. 58-69, 2016.

                4.Shuang Li, Shiji Song and Gao Huang. Prediction reweighting for domain adaptation. IEEE Transactions on Neural Networks and Learning Systems, 2016.

                5.Quan Zhou, Shiji Song, Gao Huang and Cheng Wu. Efficient lasso training from a geometrical perspective. Neurocomputing 168 (11), pp. 234-239, 2015.

                6.Chen Qin, Shiji Song and Gao Huang and Lei Zhu. Unsupervised neighborhood component analysis for clustering. Neurocomputing, 168(11), pp. 609-617, 2015.

                7.Gao Huang, Tianchi Liu, Yan Yang, Zhiping Lin, Shiji Song and Cheng Wu. Discriminative clustering via extreme learning machine, Neural Networks, 70(10), pp. 1-8, 2015.

                8.Gao Huang, Guang-Bin Huang, Shiji Song and Keyou You. Trends in extreme learning machine: a review, Neural Networks, 61(2), pp. 32-48, 2015.

                9.Gao Huang, Shiji Song, Jatinder Gupta and Cheng Wu. Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44 (12), pp. 2405-2417, 2014.

                10.Gao Huang, Shiji Song, Jatinder Gupta and Cheng Wu. A second order cone programming approach for semi-supervised learning. Pattern Recognition, 46(12), pp. 3548-3558, 2013.

                11.Gao Huang, Shiji Song, Cheng Wu and Keyou You. Robust support vector regression for uncertain input and output data, IEEE Transactions on Neural Networks and Learning System, 23 (11), pp. 1690-1700, 2012.

                12.Gao Huang, Shiji Song and Cheng Wu. Orthogonal least squares algorithm for training cascade neural networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 59 (11), pp. 2629-2637, 2012.

                 

                Copyright ? 2010 清華大學自動化系 All Rights Reserved.

                地址:北京市海神秘白玉瓶飄了出來澱區清華園1號 10008

                本站不再支持您的瀏覽器,360、sogou等瀏覽器請切換到急速模︻式,或升級您的瀏擂臺之上覽器到 更高的版本!以獲▲得更好的觀看效果。